[ домой ] | [ следующий ] [ начало главы ] [ предыдущий ] | [ содержание ] |
Какое количество информации содержится, к примеру, в тексте романа "Война и мир", во фресках Рафаэля или в генетическом коде человека? Ответа на эти вопросы наука не даёт и, по всей вероятности, даст не скоро. А возможно ли объективно измерить количество информации? Важнейшим результатом теории информации является следующий вывод:
В определенных, весьма широких условиях можно пренебречь качественными особенностями информации, выразить её количество числом, а также сравнить количество информации, содержащейся в различных группах данных. |
В настоящее время получили распространение подходы к определению понятия
"количество информации", основанные на том, что информацию, содержащуюся
в сообщении, можно нестрого трактовать в смысле её новизны или, иначе,
уменьшения неопределённости наших знаний об объекте.
Эти подходы используют математические понятия вероятности и логарифма.
Если вы еще не знакомы с этими понятиями, то можете пока пропустить этот материал.
Подходы к определению количества информации. Формулы Хартли и Шеннона. Американский инженер Р. Хартли в 1928 г. процесс получения информации рассматривал как выбор одного сообщения из конечного наперёд заданного множества из N равновероятных сообщений, а количество информации I, содержащееся в выбранном сообщении, определял как двоичный логарифм N.
Допустим, нужно угадать одно число из набора чисел от единицы до ста. По формуле Хартли можно вычислить, какое количество информации для этого требуется: I = log2100 > 6,644. Таким образом, сообщение о верно угаданном числе содержит количество информации, приблизительно равное 6,644 единицы информации. Приведем другие примеры равновероятных сообщений:
Определим теперь, являются ли равновероятными сообщения "первой выйдет из дверей здания женщина" и "первым выйдет из дверей здания мужчина". Однозначно ответить на этот вопрос нельзя. Все зависит от того, о каком именно здании идет речь. Если это, например, станция метро, то вероятность выйти из дверей первым одинакова для мужчины и женщины, а если это военная казарма, то для мужчины эта вероятность значительно выше, чем для женщины. Для задач такого рода американский учёный Клод Шеннон предложил в 1948 г. другую формулу определения количества информации, учитывающую возможную неодинаковую вероятность сообщений в наборе.
Легко заметить, что если вероятности p1, ..., pN равны, то каждая из них равна 1 / N, и формула Шеннона превращается в формулу Хартли. Помимо двух рассмотренных подходов к определению количества информации, существуют и другие. Важно помнить, что любые теоретические результаты применимы лишь к определённому кругу случаев, очерченному первоначальными допущениями. |
В качестве единицы информации Клод Шеннон предложил принять один бит (англ. bit binary digit двоичная цифра).
Бит в теории информации количество информации, необходимое
для различения двух равновероятных сообщений (типа "орел""решка", "чет""нечет" и т.п.).
В вычислительной технике битом называют наименьшую "порцию" памяти компьютера, необходимую для хранения одного из двух знаков "0" и "1", используемых для внутримашинного представления данных и команд. |
Бит слишком мелкая единица измерения. На практике чаще применяется более крупная единица байт, равная восьми битам. Именно восемь битов требуется для того, чтобы закодировать любой из 256 символов алфавита клавиатуры компьютера (256=28).
Широко используются также ещё более крупные производные единицы информации:
В последнее время в связи с увеличением объёмов обрабатываемой информации входят в употребление такие производные единицы, как:
За единицу информации можно было бы выбрать количество информации, необходимое для различения, например, десяти равновероятных сообщений. Это будет не двоичная (бит), а десятичная (дит) единица информации.
[ домой ] | [ следующий ] [ начало главы ] [ предыдущий ] | [ содержание ] |