[ домой ] | [ следующий ] [ начало главы ] [ предыдущий ] | [ содержание ] |
7.1. Запишите по правилам алгоритмического языка выражения:
a) | e) | ||
б) | ж) | ||
в) | з) | ||
г) | и) | ||
д) | к) |
7.2. Запишите в обычной математической форме арифметические
выражения:
а) a / b ** 2; б) a+b/c+1; в) 1/a*b/c; г) a**b**c/2; д) (a**b)**c/2; е) a/b/c/d*p*q; ж) x**y**z/a/b; з) 4/3*3.14*r**3; и) b/sqrt(a*a+b); к) d*c/2/R+a**3; |
л) 5*arctg(x)-arctg(y)/4; м) lg(u*(1/3)+sqrt(v)+z); н) ln(y*(-sqrt(abs(x)))); о) abs(x**(y/x)-(y/x)**(1/3)); п) sqrt((x1-x2)**2+(y1-y2)**2); р) exp(abs(x-y))*(tg(z)**2+1)**x; c) lg(sqrt(exp(x-y))+x**abs(y)+z); т) sqrt(exp(a*x)*sin(x)**n)/cos(x)**2; у) sqrt(sin(arctg(u))**2+abs(cos(v))); ф) abs(cos(x)+cos(y))**(1+sin(y)**2); |
7.3. Вычислите значения арифметических выражений при x=1:
а) abs(x-3)/ln(exp(3))*2/lg(10000);
Решение: abs(1-3)=2; ln(exp(3))=3; lg(10000)=4; 2/3*2/4=0.33;
б) sign(sqrt(sqrt(x+15)))*2**2**2;
в) int(-2.1)*int(-2.9)/int(2.9)+x;
г) -sqrt(x+3)**2**(sign(x+0.5)*3)+tg(0);
д) lg(x)+cos(x**2-1)*sqrt(x+8)-div(2,5);
е) sign(x-2)*sqrt(int(4.3))/abs(min(2,-1));
ж) div(10,x+2)*mod(10,x+6)/max(10,x)*mod(2,5).
[ Ответ ]
7.4. Запишите арифметические выражения, значениями которых являются:
а) площадь треугольника со сторонами a, b, c (a, b, c>0)
и полупериметром p;
Ответ: sqrt(p*(p-a)*(p-b)*(p-c));
б) среднее арифметическое и среднее геометрическое чисел a, b, c,
d;
в) расстояние от точки с координатами (x,y) до точки (0,0);
г) синус от x градусов;
д) площадь поверхности куба (длина ребра равна а);
е) радиус описанной сферы куба (длина ребра равна а);
ж) координаты точки пересечения двух прямых, заданных уравнениями
a1x+b1y+c1=0 и a2x+b2y+c2=0
(прямые не параллельны).
[ Ответ ]
7.5. Вычислите значения логических выражений:
а) x*x+y*y<=9 при x=1, y=-2
Ответ: да;
б) b*b-4*a*c<0 при a=2, b=1, c=-2;
в) (a>=1) и (a<=2) при a=1.5;
г) (a<1) или (a>1.2) при a=1.5;
д) (mod(a,7)=1) и (div(a,7)=1) при a=8;
е) не ((a>b) и (a<9) или (а*а=4)) при
a=5, b=4.
[ Ответ ]
7.6. Запишите логические выражения, истинные только при выполнении указанных
условий:
а) x принадлежит отрезку [a, b]
Ответ: (x>=a) и (x<=b);
б) x лежит вне отрезка [a, b];
в) x принадлежит отрезку [a, b] или отрезку [c, d];
г) x лежит вне отрезков [a, b] и [c, d];
д) целое k является нечетным числом;
е) целое k является трехзначным числом, кратным пяти;
ж) элемент ai,j двумерного массива находится на пересечении
нечетной строки и четного столбца;
з) прямые a1x+b1y+c1=0 и a2x+b2y+c2=0
параллельны;
и) из чисел a, b, c меньшим является с, а большим b;
к) среди чисел a, b, c, d есть взаимно противоположные;
л) среди целых чисел a, b, c есть хотя бы два четных;
м) из отрезков с длинами a, b, c можно построить треугольник;
н) треугольники со сторонами a1, b1, c1
и a2, b2, c2 подобны;
о) точка с координатами (x,y) принадлежит внутренней области треугольника
с вершинами A(0,5), B(5,0) и C(1,0);
п) точка с координатами (x,y) принадлежит области, внешней по
отношению к треугольнику с вершинами A(0,5), B(1,0) и C(5,0);
р) четырехугольник со сторонами a, b, c и d является ромбом.
[ Ответ ]
7.7. Начертите на плоскости (x,y) область, в которой и только
в которой истинно указанное выражение. Границу, не принадлежащую этой области,
изобразите пунктиром.
а) (x<=0) и (y>=0) Ответ: |
е) ((x-2)**2+y*y<=4) и (y>x/2) Ответ: |
б) (x>=0) или (y<=0) в) x+y>=0 г) (x+y>0) и (y<0) д) abs(x)+abs(y)>=1 |
ж) (x*x+y*y<1) и (y>x*x); з) (y>=x) и (y+x>=0) и (y<=1); и) (abs(x)<=1) и (y<2); к) (x**2+y**2<4) и (x**2+y**2>1); |
7.8. Запишите логическое выражение, которое принимает значение "истина"
тогда и только тогда, когда точка с координатами (x, y) принадлежит заштрихованной
области.
7.9. Пусть a=3, b=5, c=7. Какие значения будут
иметь эти переменные в результате выполнения последовательности операторов:
а) a:=a+1; b:=a+b; c:=a+b; a:=sqrt(a)
Решение: a=3+1=4, b=4+5=9, c=4+9=13,
a= {корень квадратный из} 4 =2.
Ответ: а=2, b=9, c=13;
б) с:=a*b+2; b:=b+1; a:=c-b**2; b:=b*a;
в) b:=b+a; c:=c+b; b:=1/b*c;
г) p:=c; c:=b; b:=a; a:=p; c:=a*b*c*p;
д) c:=a**(b-3); b:=b-3; a:=(c+1)/2*b; c:=(a+b)*a;
е) x:=a; a:=b; b:=c; c:=x; a:=sqrt(a+b+c+x-2);
ж) b:=(a+c)**2; a:=lg(b**2)**2; c:=c*a*b.
[ Ответ ]
7.10. Задайте с помощью операторов присваивания следующие действия:
а) массив X=(x1, x2) преобразовать по правилу:
в качестве x1 взять сумму, а в качестве х2 произведение
исходных компонент;
Решение: c:=x[1]; x[1]:=x[1]+x[2]; x[2]:=c*x[2]
б) поменять местами значения элементов массива X=(x1, x2);
в) в массиве A(N) компоненту с номером i (1<i<N)
заменить полусуммой исходных соседних с нею компонент, соседнюю справа компоненту
заменить на нуль, а соседнюю слева компоненту увеличить на 0.5;
г) u = max(x, y, z) + min(x-z, y+z, y, z);
[ Ответ ]
7.11. Задайте с помощью команд если или выбор вычисления
по формулам:
a) | ||
б) | ||
в) |
где |
|
г) | ||
д) | ||
е) | ||
ж) | если точка лежит внутри круга радиусом r (r>0) с центром в точке (a,b) в противном случае |
7.12. Постройте графики функций y(x), заданных командами
если:
а) если x<=-1 то y:=1/x**2 иначе если x<=2 то y:=x*x иначе y:=4 все все |
в) если x<-0.5 то y:=1/abs(x) иначе если x<1 то y:=2 иначе y:=1/(x-0.5) все все |
Решение |
г) если x<0 то y:=1 иначе если x<3.14 то y:=cos(x) иначе y:=-1 все все |
б) если x<-5 то y:=-5 иначе если x<0 то y:=x иначе если x<3 то y:=2*x иначе y:=6 все все все |
д) если abs(x)>2 то y:=x*x иначе если x<0 то y:=-2*x иначе если x>=1 то y:=4 иначе y:=4*x*x все все все |
7.13. Определите значение целочисленной переменной S после выполнения
операторов:
а) S:=128 нц для i от 1 до 4 S:=div(S,2) кц |
Решение
|
г) S:=0 нц для i от 1 до 2 нц для j от 2 до 3 S:=S+i+j кц кц |
Решение
|
||||||||||||||||||||||||||||||
б) S:=1; a:=1 нц для i от 1 до 3 S:=S+i*(i+1)*a a:=a+2 кц |
д) нц для i от 1 до 3 S:=0 нц для j от 2 до 3 S:=S+i+j кц кц |
||||||||||||||||||||||||||||||||
в) S:=1; a:=1 нц для i от 1 до 3 S := S+i нц для j oт 2 до 3 S := S+j кц кц |
е) нц для i от 1 до 2 S := 0 нц для j oт 2 до 3 нц для k oт 1 до 2 S := S+i+j+k кц кц кц |
7.14. Определите значение переменной S после выполнения операторов:
а) i:=0; S:=0 нц пока i<3 i:=i+1; S:=S+i*i кц |
г) S:=0; N:=125 нц пока N>0 S:=S+mod(N,10) | S сумма цифр N:=div(N,10) | числа N кц |
||||||||||||||||||||||||||||||||||||
Решение
|
Решение
|
||||||||||||||||||||||||||||||||||||
б) S:=0; i:=1 нц пока i>1 S:=S+1/i i:=i-1 кц |
д) а:=1; b:=1; S:=0; нц пока a<=5 a:=a+b; b:=b+a; S:=S+a+b кц |
||||||||||||||||||||||||||||||||||||
в) S:=0; i:=1; j:=5 нц пока i<j S:=S+i*j i:=i+1 j:=j-1 кц |
е) a:=1; b:=1 нц пока a+b<10 a:=a+1 b:=b+a кц S:=a+b |
7.15. Составьте алгоритмы решения задач линейной структуры (условия этих задач заимствованы из учебного пособия В.М. Заварыкина, В.Г. Житомирского и М.П. Лапчика "Основы информатики и вычислительной техники", 1989):
а) в треугольнике известны три стороны a, b и c;
найти (в градусах) углы этого треугольника, используя формулы:
С=180o-(А+В). |
алг Углы треугольника(арг вещ a,b,c, рез вещ UgolA,UgolB,UgolC) нач вещ RadGr,UgolARad | RadGr коэф. перевода угла из радианной меры в градусную | UgolARad угол A (в радианах) RadGr:=180/3.14 UgolARad:=ArcCos((b*b+c*c-a*a)/(2*b*c)) UgolA:=UgolARad*RadGr UgolB:=ArcSin(b*sin(UgolARad)/a)*RadGr UgolC:=180-(UgolA+UgolB) кон
б) в треугольнике известны две стороны a, b и угол C
(в радианах) между ними; найти сторону c, углы A и B
(в радианах) и площадь треугольника, используя формулы:
в) в треугольнике известны три стороны a, b и c; найти радиус описанной окружности и угол A (в градусах), используя формулы:
г) в правильной треугольной пирамиде известны
сторона основания a и угол A (в градусах) наклона боковой
грани к плоскости основания; найти объем и площадь полной поверхности
пирамиды, используя формулы:
V=Socн· H/2; | ||
где |
д) в усеченном конусе известны радиусы оснований R и r
и угол A (в радианах) наклона образующей к поверхности большего
основания; найти объем и площадь боковой поверхности конуса, используя формулы:
где |
e) в правильной четырехугольной пирамиде сторона основания равна
a , а боковое ребро наклонено к плоскости основания
под углом A ; найти объем и площадь полной поверхности пирамиды и
площадь сечения, проходящего через вершину пирамиды и диагональ основания
d ; использовать формулы:
7.16. Составьте алгоритм решения задач развлетвляющейся структуры:
а) определить, является ли треугольник с заданными сторонами
a, b, c равнобедренным;
Решение:
алг Треугольник(арг вещ a,b,c, рез лог Otvet) дано | a>0, b>0, c>0, a+b>c, a+c>b, b+c>a надо | Otvet = да, если треугольник равнобедренный | Otvet = нет, если треугольник не равноведренный нач если (a=b) или (a=c) или (b=c) то Otvet:= да иначе Otvet:= нет все кон
б) определить количество положительных чисел среди заданных чисел a, b и c;
в) меньшее из двух заданных неравных чисел увеличить вдвое, а большее оставить без изменения;
г) числа a и b катеты одного прямоугольного треугольника, а c и d другого; определить, являются ли эти треугольники подобными;
д) даны три точки на плоскости; определить, какая из них ближе к началу координат;
е) определить, принадлежит ли заданная точка (x, y) плоской фигуре, являющейся кольцом с центром в начале координат, с внутренним радиусом r1 и внешним радиусом r2 ;
ж) упорядочить по возрастанию последовательность трех чисел
a, b и c.
[ Ответ ]
[ домой ] | [ следующий ] [ начало главы ] [ предыдущий ] | [ содержание ] |